Students can access the NCERT MCQ Questions for Class 12 Maths Chapter 7 Integrals with Answers Pdf free download aids in your exam preparation and you can get a good hold of the chapter. Use MCQ Questions for Class 12 Maths with Answers during preparation and score maximum marks in the exam. Students can download the Integrals Class 12 MCQs Questions with Answers from here and test their problem-solving skills. Clear all the fundamentals and prepare thoroughly for the exam taking help from Class 12 Maths Chapter 7 Integrals Objective Questions.
Integrals Class 12 MCQs Questions with Answers
Students are advised to solve the Integrals Multiple Choice Questions of Class 12 Maths to know different concepts. Practicing the MCQ Questions on Integrals Class 12 with answers will boost your confidence thereby helping you score well in the exam.
Explore numerous MCQ Questions of Integrals Class 12 with answers provided with detailed solutions by looking below.
Question 1.
The anti-derivative of (√x + \(\frac { 1 }{√x}\)) equals
Answer
Answer: (c) \(\frac { 2 }{3}\) x\(\frac { 2 }{3}\) + 2x\(\frac { 1 }{2}\) + c
Question 2.
If \(\frac { 1 }{dx}\) (f(x)) = 4x³ – \(\frac { 3 }{x^4}\) such that f(2) = 0 then f(x) is ……………
Answer
Answer: (a) x4 + \(\frac { 1 }{x^3}\) – \(\frac { 129 }{8}\)
Question 3.
∫\(\frac { 10x^9+10^x log_e 10 }{x^{10} + 10^x}\) dx equals
(a) 10x -x10 + c
(b) 10x + x10 + c
(c) (10x – x10)-1 + c
(d) log (10x + x10) + c.
Answer
Answer: (d) log (10x + x10) + c.
Question 4.
∫\(\frac { dx }{sin^2 x cos^2 x}\) equals
(a) tan x + cot x + c
(b) tan x – cot x + c
(c) tan x cot x + c
(d) tan x – cot 2x + c.
Answer
Answer: (b) tan x – cot x + c
Question 5.
∫\(\frac { sin^2 x – cos ^2 x }{sin^2 x cos^2 x}\) dx is equals to
(a) tan x + cot x + c
(b) tan x + cosec x + c
(c) -tan x + cot x + c
(d) tan x + sec x + c.
Answer
Answer: (a) tan x + cot x + c
Question 6.
∫\(\frac { e^x(1 + x) }{cos^2(xe^2)}\) dx is equals to
(a) -cot (xex) + c
(b) tan (xex) + c
(c) tan (ex) + c
(d) cot (ex) + c
Answer
Answer: (b) tan (xex) + c
Question 7.
∫\(\frac { dx }{x^2+2x+2}\) equals
(a) x tan-1 (x + 1) + c
(b) tan-1 (x + 1) + c
(c) (x + 1) tan-1 x + c
(d) tan-1 x + c.
Answer
Answer: (b) tan-1 (x + 1) + c
Question 8.
∫\(\frac { dx }{\sqrt{9-25x^2}}\) equals
Answer
Answer: (b) \(\frac { 1 }{5}\) sin-1 (\(\frac { 5x }{3}\)) + c
Question 9.
∫\(\frac { x dx }{(x-1)(x-2)}\) equals
(d) log |(x – 1) (x – 2)| + c.
Answer
Answer: (b) log |\(\frac { (x-2)^2 }{x-1}\)| + c
Question 10.
∫\(\frac { dx }{x(x^2+1)}\) equals
(a) log |x| – \(\frac { 1 }{2}\) log (x² + 1) + c
(b) \(\frac { 1 }{2}\) log |x| + \(\frac { 1 }{2}\) log (x² + 1) + c
(c) -log |x| + \(\frac { 1 }{2}\) log (x² + 1) + c
(d) log |x| + log (x² + 1) + c
Answer
Answer: (a) log |x| – \(\frac { 1 }{2}\) log (x² + 1) + c
Question 11.
∫x² ex³ dx equals
(a) \(\frac { 1 }{3}\) ex³ + c
(b) \(\frac { 1 }{3}\) ex² + c
(c) \(\frac { 1 }{2}\) ex³ + c
(d) \(\frac { 1 }{2}\) ex² + c
Answer
Answer: (a) \(\frac { 1 }{3}\) ex³ + c
Question 12.
∫ex sec x (1 + tan x) dx equals
(a) ex cos x + c
(b) ex sec x + c
(c) ex sin x + c
(d) ex tan x + c.
Answer
Answer: (b) ex sec x + c
Question 13.
∫\(\sqrt { 1 + x^2}\) dx is equal to
Answer
Answer:
Question 14.
∫\(\sqrt { x^2 – 8x + 7}\) dx is equal to
Answer
Answer:
Question 15.
\(\int_{1}^{\sqrt{3}}\) \(\frac { dx }{1+x^2}\) equals
(a) \(\frac { π }{3}\)
(b) \(\frac { 2π }{3}\)
(c) \(\frac { π }{6}\)
(d) \(\frac { π }{112}\)
Answer
Answer: (d) \(\frac { π }{112}\)
Question 16.
\(\int_{1}^{2/3}\) \(\frac { dx }{4+9x^2}\) equals
(a) \(\frac { π }{6}\)
(b) \(\frac { π }{12}\)
(c) \(\frac { π }{24}\)
(d) \(\frac { π }{4}\)
Answer
Answer: (c) \(\frac { π }{24}\)
Question 17.
The value of the integral \(\int_{1}^{2/3}\) \(\frac { (x-x^3)^{1/3} }{x^4}\) dx is
(a) 6
(b) 0
(c) 3
(d) 4
Answer
Answer: (a) 6
Question 18.
If f(x) = \(\int_{0}^{x}\) t sin t dt, then f'(x) is
(a) cos x + x sin x
(b) x sin x
(c) x cos x
(d) sin x + x cos x.
Answer
Answer: (b) x sin x
Question 19.
The value of
\(\int_{-π/2}^{π/2}\) (x³ + x cos x + tan5 x + 1) dx is
(a) 0
(b) 2
(c) π
(d) 1
Answer
Answer: (c) π
Question 20.
The value of \(\int_{0}^{π/2}\) log (\(\frac { 4+3 sin x }{4+3 cos x}\)) dx is
(a) 2
(b) \(\frac { 3 }{4}\)
(c) 0
(d) -2
Answer
Answer: (c) 0
Question 21.
∫\(\frac { dx }{e^x+e{-x}}\) is equal to
(a) tan-1 (ex) + c
(b) tan-1 (e-x) + c
(c) log (ex – e-1) + c
(d) log (ex + e-x) + c.
Answer
Answer: (a) tan-1 (ex) + c
Question 22.
∫\(\frac { cos 2x }{(sin x + cos x)^2}\) dx is equal to
(a) \(\frac { -1 }{sin x + cos x}\) + c
(b) log |sin x + cos x| + c
(c) log |sin x – cos x| + c
(d) \(\frac { 1 }{(sin x + cos x)^2}\) + c
Answer
Answer: (b) log |sin x + cos x| + c
Question 23.
If f (a + b – x) = f(x), then \(\int_{a}^{b}\) x f(x) dx is equal to
Answer
Answer: (d) \(\frac { a+b }{2}\) \(\int_{a}^{b}\) f(x) dx
Question 24.
∫ex(cos x – sin x)dx is equal to
(a) ex – cos x + c
(b) ex sin x + c
(c) -ex cos x + c
(d) -ex sin x + c.
Answer
Answer: (a) ex – cos x + c
Question 25.
∫\(\frac { dx }{sin^2 x cos^2 x}\) is equal to
(a) tan x + cot x + c
(b) (tan x + cot x)² + c
(c) tan x – cot x + c
(d) (tan x – cot x)² + c.
Answer
Answer: (c) tan x – cot x + c
Question 26.
If ∫ \(\frac { 3e^x-5e^{-x} }{4r^x+5e^{-x}}\) dx = ax + b log |4ex + 5e-x| + c then
(a) a = –\(\frac { 1 }{8}\), b = \(\frac { 7 }{8}\)
(b) a = \(\frac { 1 }{8}\), b = \(\frac { 7 }{8}\)
(c) a = \(\frac { -1 }{8}\), b = –\(\frac { 7 }{8}\)
(d) a = \(\frac { 1 }{8}\), b = –\(\frac { 7 }{8\)
Answer
Answer: (a) a = –\(\frac { 1 }{8}\), b = \(\frac { 7 }{8}\)
Question 27.
∫tan-1 √x dx is equal to
(a) (x + 1)tan-1 √x – √x + c
(b) x tan-1 √x – √x + c
(c) √x – x tan-1 √x + c
(d) -1x – (x + 1) tan-1 √x + c
Answer
Answer: (a) (x + 1)tan-1 √x – √x + c
Question 28.
∫ex(\(\frac { 1-x }{(1+x^2)}\))2 dx is equal to:
Answer
Answer: (c) \(\frac { e^x }{(1+x^2)^2}\) + c
Question 29.
\(\int_{a+c}^{b+c}\) f(x)dx is equal to :
(a) \(\int_{c}^{b}\) f(x – c)dx
(b) \(\int_{c}^{b}\) f(x + c)dx
(c) \(\int_{c}^{b}\) f(x)dx
(d) \(\int_{a-c}^{b-c}\)
Answer
Answer: (b) \(\int_{c}^{b}\) f(x + c)dx
Question 30.
\(\int_{-1}^{1}\) \(\frac { x^3+|x|+1 }{x^2+2|x|+1}\) is equal to
(a) log 2
(b) 2 log 2
(c) \(\frac { 1 }{2}\) log 2
(d) 4 log 2
Answer
Answer: (b) 2 log 2
Question 31.
\(\int_{c}^{b}\) |x cos πx|dx is equal to
(a) \(\frac { 8 }{π}\)
(b) \(\frac { 4 }{π}\)
(c) \(\frac { 2 }{π}\)
(d) \(\frac { 1 }{π}\)
Answer
Answer: (a) \(\frac { 8 }{π}\)
Question 32.
If \(\int_{0}^{1}\) \(\frac { e^t }{1+t}\) dt = a, then \(\int_{0}^{1}\) \(\frac { e^t }{(1+t)^2}\)
(a) a – 1 + \(\frac { e }{2}\)
(b) a + 1 – \(\frac { e }{2}\)
(c) a – 1 – \(\frac { e }{2}\)
(d) a + 1 + \(\frac { e }{2}\)
Answer
Answer: (b) a + 1 – \(\frac { e }{2}\)
Question 33.
If x = \(\int_{0}^{y}\) \(\frac { dt }{\sqrt{1+9t^2}}\) and \(\frac { d^y }{dx^2}\) = ay, then a is equal to
(a) 3
(b) 6
(c) 9
(d) 1.
Answer
Answer: (c) 9
Question 34.
Let I = \(\int_{0}^{1}\) \(\frac { sin x }{√x}\) dx and J = \(\int_{0}^{1}\) \(\frac { cos x }{√x}\) dx. Then which of the following is true?
(a) I > \(\frac { 2 }{3}\) and J < 2
(b) I > \(\frac { 2 }{3}\) and J > 2
(c) I < \(\frac { 2 }{3}\) and J < 2
(d) I < \(\frac { 2 }{3}\) and J > 2.
Answer
Answer: (c) I < \(\frac { 2 }{3}\) and J < 2
Hint:
Question 35.
\(\int_{0}^{π}\) [cot x]dx, where [ . ] denotes the greatest integer function, is equal to
(a) \(\frac { π }{2}\)
(b) 2
(c) -1
(d) –\(\frac { π }{2}\)
Answer
Answer: (d) –\(\frac { π }{2}\)
Hint:
Question 36.
Let p (x) be a function defined on R such that p'(x) = p'(1 – x), for all x ∈ [0, 1], p(0) = 1 and p (1) = 41.
Then \(\int_{0}^{1}\) p(x) dx equals
(a) \(\sqrt { 41}\)
(b) 21
(c) 41
(d) 42
Answer
Answer: (b) 21
Hint:
Here p'(x) – p'(1 – x).
Integrating, p (x) = -p (1 – x) + c ………… (1)
At x = 0, p(0) = -p (1) + c
⇒ 1 = -41 + c ⇒ c = 42.
Putting in (1),
p (x) = -p(1 – x) + 42
∴ \(\int_{0}^{1}\) p(x) dx = –\(\int_{0}^{1}\) p(1 – x)dx + \(\int_{0}^{1}\) 42 dx
⇒ 21 = 42[x]\(_{ 0 }^{1}\)
⇒ 21 = 42
⇒ I = 21.
Question 37.
Let In = ∫tan” x dx, (n > 1).
If I4 + I6 = a tan5 x + bx5 + c, where c is a constant of integration, then the ordered pair (a, b) is equal to
(a) (\(\frac { 1}{5}\), -1)
(b) (-\(\frac { 1}{5}\), 0)
(c) (-\(\frac { 1}{5}\), 1)
(d) (\(\frac { 1}{5}\), 0)
Answer
Answer: (d) (\(\frac { 1}{5}\), 0)
Hint:
Here I4 + I6 = a tan5 x + bx5 + c
⇒ ∫tan4x dx + ∫tan6 x dx = a tan5 x + bx5 + c.
Diff. both sides,
tan4 x + tan6 x = 5a tan4 x sec² x + 5bx4
= 5 a tan4 x(1 + tan2 x) + 5 bx4
= 5a tan4 x + 5a tan6x + 5bx4.
Comparing, 1 = 5a and 5b = 0
⇒ a = \(\frac { 1 }{5}\) and b = 0.
Hence, (a, b) = (\(\frac { 1}{5}\), 0)
Question 38.
The integral
Answer
Answer: (b) \(\frac {-1}{3(1+tan^3 x)}\) + c
Hint:
Question 39.
The value of \(\int_{-π/2}^{π/2}\) \(\frac { sin^2 x }{1 + 2^x}\) dx is
(a) \(\frac { π}{8}\)
(b) \(\frac {π}{2}\)
(c) 4π
(d) \(\frac {π}{4}\)
Answer
Answer: (d) \(\frac {π}{4}\)
Hint:
Fill in the blanks
Question 1.
∫(√x + \(\frac {1}{√x}\)) dx (x ≠ 0) = ………………
Answer
Answer: \(\frac { 2 }{3}\) x√x + 2√x
Question 2.
∫cot x dx = ………………….
Answer
Answer: log |sin x| + c
Question 3.
∫sec x dx = ………………
Answer
Answer: log |sec x + tan x| + c
Question 4.
∫ \(\frac { sin^2 x – cos^2 x }{sin x cos x}\) dx = ………………..
Answer
Answer: log |sec x| – log |sin x| + c
Question 5.
∫ \(\frac { x^3+5x^2+4 }{x^2}\) dx = ………………
Answer
Answer: \(\frac { x^2 }{2}\) + 5x – \(\frac { 4 }{x}\) + c
Question 6.
∫tan² x dx ………………..
Answer
Answer: tan x – x+ c
Question 7.
∫ \(\sqrt { a^2+x^2}\) dx = ………………..
Answer
Answer: \(\frac{x \sqrt{a^{2}+x^{2}}}{2}\) + \(\frac { a^2 }{2}\) log|x + \(\sqrt { a^2+x^2}\)| + c
Question 8.
∫ (2 – x) sin x dx = ……………..
Answer
Answer: -2 cos x + x cos x – sin x + c
Question 9.
If ∫ ex(tan x + 1) sec x dx = ex f(x) + c, then f(x) = ………………
Answer
Answer: sec x
Question 10.
∫ \(\frac { 1 }{9x^2-1}\) dx = …………….
Answer
Answer: \(\frac { 1 }{6}\) log |\(\frac { 3x-1 }{3x+1}\)| + c
Question 11.
\(\int_{2}^{3}\) 3x dx = …………………….
Answer
Answer: \(\frac { 18 }{log 3}\)
Question 12.
\(\int_{0}^{1}\) \(\frac { dx }{\sqrt{1+x^2}}\) = ……………..
Answer
Answer: log (1 + √2)
Question 13.
If \(\int_{0}^{1}\) (3x² + 2x + k) dx = 0, then the value of ‘k’ ………………..
Answer
Answer: -2
Question 14.
If f(x) = \(\int_{0}^{x}\) t sin t dt, then the value of f'(x) = ………………….
Answer
Answer: x sin x
Question 15.
\(\int_{0}^{1.5}\) [x] dx = ………………. where [x] is greatest integer function.
Answer
Answer: 0.5
We believe the knowledge shared regarding NCERT MCQ Questions for Class 12 Maths Chapter 7 Integrals with Answers Pdf free download has been useful to the possible extent. If you have any other queries regarding CBSE Class 12 Maths Integrals MCQs Multiple Choice Questions with Answers, feel free to reach us via the comment section and we will guide you with the possible solution.