# MCQ Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry with Answers

Students can access the NCERT MCQ Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry with Answers Pdf free download aids in your exam preparation and you can get a good hold of the chapter. Use MCQ Questions for Class 10 Maths with Answers during preparation and score maximum marks in the exam. Students can download the Introduction to Trigonometry Class 10 MCQs Questions with Answers from here and test their problem-solving skills. Clear all the fundamentals and prepare thoroughly for the exam taking help from Class 10 Maths Chapter 8 Introduction to Trigonometry Objective Questions.

## Introduction to Trigonometry Class 10 MCQs Questions with Answers

Students are advised to solve the Introduction to Trigonometry Multiple Choice Questions of Class 10 Maths to know different concepts. Practicing the MCQ Questions on Introduction to Trigonometry Class 10 with answers will boost your confidence thereby helping you score well in the exam.

Explore numerous MCQ Questions of Introduction to Trigonometry Class 10 with answers provided with detailed solutions by looking below.

Question 1.
If cos (α + β) = 0, then sin (α – β) can be reduced to
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α

Question 2.
If cos (40° + A) = sin 30°, the value of A is:?
(a) 60°
(b) 20°
(c) 40°
(d) 30°

Question 3.
If sin x + cosec x = 2, then sin19x + cosec20x =
(a) 219
(b) 220
(c) 2
(d) 239

Question 4.
If cos 9a = sin a and 9a < 90°, then the value of tan 5a is
(a) $$\frac { 1 }{ \sqrt { 3 } }$$
(b) √3
(c) 1
(d) 0

Question 5.
7 sin2θ + 3 cos2θ = 4 then :
(a) tan θ = $$\frac { 1 }{ \sqrt { 2 } }$$
(b) tan θ = $$\frac { 1 }{ 2 }$$
(c) tan θ = $$\frac { 1 }{ 3 }$$
(d) tan θ = $$\frac { 1 }{ \sqrt { 3 } }$$

Answer: (d) tan θ = $$\frac { 1 }{ \sqrt { 3 } }$$

Question 6.
(1 + tanθ + secθ) (1 + cotθ – cosecθ) is equal to
(a) 0
(b) 1
(c) 2
(d) -1

Question 7.
Ratios of sides of a right triangle with respect to its acute angles are known as
(a) trigonometric identities
(b) trigonometry
(c) trigonometric ratios of the angles
(d) none of these

Answer: (c) trigonometric ratios of the angles

Question 8.
If tan θ = $$\frac { 12 }{ 5 }$$, then $$\frac { 1+sinθ }{ 1-sinθ }$$ is equal to
(a) 24
(b) $$\frac { 12 }{ 13 }$$
(c) 25
(d) 9

Question 9.
The value of cos θ cos(90° – θ) – sin θ sin (90° – θ) is:
(a) 1
(b) 0
(c) -1
(d) 2

Question 10.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
(a) ab
(b) b2 + a2
(c) a2b2
(d) a4b4

Question 11.
If ΔABC is right angled at C, then the value of cos (A + B) is
(a) 0
(b) 1
(c) $$\frac { 1 }{ 2 }$$
(d) $$\frac { \sqrt { 3 } }{ 2 }$$

Question 12.
If x and y are complementary angles, then
(a) sin x = sin y
(b) tan x = tan y
(c) cos x = cos y
(d) sec x = cosec y

Answer: (d) sec x = cosec y

Question 13.
sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ
(b) 0
(c) 2 sin θ
(d) 1

Question 14.
If 0° < θ < 90°, then sec 0 is (a) >1
(b) < 1
(c) =1
(d) 0

Question 15.
In right triangle ABC, right angled at C, if tan A = 1, then the value of 2 sin A cos A is
(a) 0
(b) 1
(c) – 1
(d) 2

Question 16.
Given that sin A=$$\frac { 1 }{ 2 }$$ and cos B=$$\frac { 1 }{ \sqrt { 2 } }$$ then the value of (A + B) is:
(a) 30°
(b) 45°
(c) 75°
(d) 15°

Question 17.
If sin A = $$\frac { 1 }{ 2 }$$, then the value of cot A is
(a) √3
(b) $$\frac { 1 }{ \sqrt { 3 } }$$
(c) $$\frac { \sqrt { 3 } }{ 2 }$$
(d) 1

Question 18.
If √3tanθ = 3sinθ, then the value of sin2θ−cos2θ is
(a) 0
(b) 1
(c) $$\frac { 1 }{ 2 }$$
(d) $$\frac { 1 }{ 3 }$$

Answer: (d) $$\frac { 1 }{ 3 }$$

Question 19.
Out of the following options, the two angles that are together classified as complementary angles are
(a) 120° and 60°
(b) 50° and 30°
(c) 65° and 25°
(d) 70° and 30°

Question 20.
If sin θ − cos θ = 0, vthen the value of θ is
(a) 90°
(b) 30°
(c) 45°
(d) 60°

Question 21.
If tan 2A = cot (A – 18°), then the value of A is
(a) 24°
(b) 18°
(c) 27°
(d) 36°

Question 22.
If cos A + cos2 A = 1, then sin2 A + sin4 A is
(a) -1
(b) 0
(c) 1
(d) 2

Question 23.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = ____
(a) -1
(b) 0
(c) 1
(d) 2

Question 24.
sin 2B = 2 sin B is true when B is equal to
(a) 90°
(b) 60°
(c) 30°
(d) 0°